Bazooka is required for polarisation of the Drosophila anterior-posterior axis.

نویسندگان

  • Hélène Doerflinger
  • Nina Vogt
  • Isabel L Torres
  • Vincent Mirouse
  • Iris Koch
  • Christiane Nüsslein-Volhard
  • Daniel St Johnston
چکیده

The Drosophila anterior-posterior (AP) axis is determined by the polarisation of the stage 9 oocyte and the subsequent localisation of bicoid and oskar mRNAs to opposite poles of the cell. Oocyte polarity has been proposed to depend on the same PAR proteins that generate AP polarity in C. elegans, with a complex of Bazooka (Baz; Par-3), Par-6 and aPKC marking the anterior and lateral cortex, and Par-1 defining the posterior. The function of the Baz complex in oocyte polarity has remained unclear, however, because although baz-null mutants block oocyte determination, egg chambers that escape this early arrest usually develop normal polarity at stage 9. Here, we characterise a baz allele that produces a penetrant polarity phenotype at stage 9 without affecting oocyte determination, demonstrating that Baz is essential for axis formation. The dynamics of Baz, Par-6 and Par-1 localisation in the oocyte indicate that the axis is not polarised by a cortical contraction as in C. elegans, and instead suggest that repolarisation of the oocyte is triggered by posterior inactivation of aPKC or activation of Par-1. This initial asymmetry is then reinforced by mutual inhibition between the anterior Baz complex and posterior Par-1 and Lgl. Finally, we show that mutation of the aPKC phosphorylation site in Par-1 results in the uniform cortical localisation of Par-1 and the loss of cortical microtubules. Since non-phosphorylatable Par-1 is epistatic to uninhibitable Baz, Par-1 seems to function downstream of the other PAR proteins to polarize the oocyte microtubule cytoskeleton.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bazooka and PAR-6 are required with PAR-1 for the maintenance of oocyte fate in Drosophila

The anterior-posterior axis of C. elegans is defined by the asymmetric division of the one-cell zygote, and this is controlled by the PAR proteins, including PAR-3 and PAR-6, which form a complex at the anterior of the cell, and PAR-1, which localizes at the posterior [1-4]. PAR-1 plays a similar role in axis formation in Drosophila: the protein localizes to the posterior of the oocyte and is n...

متن کامل

Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka

BACKGROUND The orientation of the mitotic spindle influences the asymmetric distribution of cytoplasmic determinants and the positioning of the sibling cell, and therefore has important influences on cell-fate determination and patterning of the embryo. Both the establishment of an axis of polarity and the adjustment of this axis with respect to the coordinates of the embryo have to be controll...

متن کامل

Bazooka is required for localization of determinants and controlling proliferation in the sensory organ precursor cell lineage in Drosophila.

Asymmetric divisions with two different division orientations follow different polarity cues for the asymmetric segregation of determinants in the sensory organ precursor (SOP) lineage. The first asymmetric division depends on frizzled function and has the mitotic spindle of the pI cell in the epithelium oriented along the anterior-posterior axis, giving rise to pIIa and pIIb, which divide in d...

متن کامل

The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila

BACKGROUND Drosophila axis formation requires a series of inductive interactions between the oocyte and the somatic follicle cells. Early in oogenesis, Gurken protein, a member of the transforming growth factor alpha family, is produced by the oocyte to induce the adiacent follicle cells to adopt a posterior cell fate. These cells subsequently send an unidentified signal back to the oocyte to i...

متن کامل

Drosophila PAR-1 and 14-3-3 Inhibit Bazooka/PAR-3 to Establish Complementary Cortical Domains in Polarized Cells

PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 10  شماره 

صفحات  -

تاریخ انتشار 2010